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§ Dipartimento di Elettronica, Universitá di Firenze, Via di S Marta 3, Firenze, Italy
‖ Dipartimento di Energetica S Stecco, Universitá di Firenze, Via di S Marta 3, Firenze, Italy
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Abstract. We present the results of high-precision measurements of the structure factorS(k) of
krypton in the near-critical region of the liquid–vapour phase transition for values ofk ranging
from 1.5 up to 50 nm−1. The experimental results are compared with a theoretical calculation
based on the hierarchical reference theory (HRT) with an accurate potential which includes two-
and three-body contributions. The theory is based on a new implementation of HRT in which
we avoid the use of hard spheres as a reference system. With this soft-core formulation we find
a generally good agreement with experiments both at largek, whereS(k) probes the short-range
correlations, as well as at smallk, where critical fluctuations become dominant. Also, for the
density derivative of the pair correlation function there is an overall good agreement between
theory and experiment.

1. Introduction

The static structure factorS(k) is the fundamental quantity characterizing correlations
between pairs of particles in a fluid. In recent years some high-precision neutron scattering
measurements ofS(k) have been performed on several systems, particularly rare gases
(see for example reference [1]). These results, with a precision of the order of a few
parts per thousand, have been used both to assess the merit of different integral equations,
when a given accurate potential is used and the validity of a given interaction model. The
outcome of these studies is that the structure at short distance of a system like liquid krypton
in various thermodynamical states can be accurately reproduced by some refined integral
equations when the system is modelled by accurate interatomic potentials. These potentials
must include a two-body contribution mainly determined by the low-density properties of
the system as well as a three-body contribution. The three-body potential has only a small
effect on short-range correlations, but its presence is essential in order to get the correct
thermodynamic properties. In contrast, simplified models of the potential like the Lennard-
Jones one cannot properly describe the short-range correlations in real fluids.

Of special interest is the pair correlation function of a fluid in the region of the critical
point of the liquid–vapour phase transition. Here the radial distribution functiong(r),
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related toS(k) by Fourier transformation, develops a long-range tail on top of the short-
range structure which characterizes the local ordering of the fluid. This tail is a manifestation
of critical fluctuations on larger and larger length scales as the critical point is approached.
This is well known both experimentally and theoretically. However, no high-precision
measurement ofS(k) in the critical region over an extendedk-range has been performed.
The extendedk-range is essential in order to describe the two aspects of the correlations,
the short-range as well as the long-range part. This is the motivation for the present
measurements.

On the theoretical side, fluids in the critical region present special problems. The
method of integral equation forg(r) gives an appropriate treatment of correlations at
short range but has difficulties in reproducing the long-range part, and all known integral
equations have pathologies of some sort in the critical region. For example, the well known
modified hypernetted chain [2] (MHNC) equation does not have a proper critical point with
diverging correlation lengthξ and isothermal compressibilityκT [3]. The growth of long-
range correlations is understood and correctly accounted for by the renormalization group
(RG) approach. This scheme can be used to derive the long-wavelength behaviour of the
fluid in the critical region starting from the phenomenological description of the system
by an effective Hamiltonian which governs long-range density fluctuations: the so-called
φ4-model. The relationship between the parameters of the effective Hamiltonian and the
microscopic model is not known, so the RG approach can give accurate predictions only
for the universal quantities, like the critical exponents and scaling laws. Non-universal
properties, like the critical temperature, the corrections to the asymptotic critical behaviour,
or the short-range part of the correlation functions, are not easily handled by usual RG
treatments.

The theoretical situation has changed since the introduction of the hierarchical reference
theory (HRT) of fluids. This approach has been reviewed recently [4]. This is a genuine
liquid-state theory in the sense that models of fluids with realistic interatomic potentials
are treated. In HRT the gradual turning on of fluctuations of increasing length scale is not
achieved by partial integration over fluctuations of shorter wavelength, as is customary in
RG approaches. Instead, a sequence of partially coupled systems is introduced. They are
defined by suitable interactions such that fluctuations with wavevectork below a cut-offQ
are suppressed. AsQ is moved down to zero, one recovers the fully interacting system.
Asymptotically close to the critical point, HRT has the structure of the RG approach, so
critical exponents, scaling laws and homogeneity arise naturally in this approach. However,
HRT, unlike the RG approach, is able to give also the non-universal-part contribution to the
thermodynamic properties and the short-range part of the pair correlation.

Although HRT correctly reproduces the exact critical exponents at first order in the
ε-expansion, the numerical values at the physical dimensionalityd = 3 (corresponding to
ε = 4− d = 1) are about 10% away from the exact ones. However, as discussed in ref-
erence [4], the non-universal properties, like the critical temperature or critical amplitudes,
are well reproduced by HRT which provides a fairly accurate description of the critical
behaviour for reduced temperatures higher than∼10−3. Very close to the critical point,
the discrepancy between the exact values of the critical exponents and their HRT estimates
becomes important, leading to appreciable deviations in the physical quantities.

HRT has been already applied to the Lennard-Jones fluids and to a model with two-
and three-body interaction. The results of the present measurements ofS(k) for krypton
allow a detailed comparison between theory and experiment to be made. As the interatomic
interaction we consider the model of two- and three-body contributions which successfully
described the structure factor of krypton in the dense regime. HRT is a formally exact
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scheme but actual calculations require the introduction of a closure of the infinite set of
equations. We truncate the set of equations at the first equation which gives the evolution
of the free energy as function ofQ, by means of anansatzon the pair correlation function
of the partially coupled system. As a reference system we do not use hard spheres as in
previous applications but the actual repulsive forces of the model potential. The reason
for the change of the reference system is that hard spheres represent well the effect of
steep repulsive forces at high density and low temperature but this representation is less
accurate at low and intermediate densities where the critical point is located. In this work we
implement a closure which has been suggested recently as a way to handle smooth repulsive
forces and which is inspired by what is known as the soft mean-spherical approximation
(SMSA) [5].

The plan of the paper is as follows. In section 2 we discuss the experimental techniques
and in section 3 we present the theoretical scheme. In section 4 we detail the interaction
model and some aspects of the computations. In section 5 we present the comparison of
the experimental results with the theoretical calculations, both in the region of the first
maximum of the structure factor and for small values ofk, of the order of 2–2.5 nm−1. The
final section contains some concluding remarks.

2. Experiment

The experiment was performed on the D20 diffractometer at the Institut Laue–Langevin
in Grenoble. The instrument was in its standard configuration, with the 126-cell position-
sensitive detector covering an angular range of 12.6◦ at 1445 mm from the sample position.
The efficiency of each cell was calibrated to an accuracy better than 0.1%. In order to
reduce parasitic air scattering, an evacuated nose was put along the scattered neutron beam
path between the sample and the detector. The selected incident neutron beam wavelength
was λ = 0.240 80± 0.000 01 nm, as verified by means of Si powder diffraction. This
allowed the exchanged wavevector range 1.9< k < 50.5 nm−1 to be investigated.

In order to achieve a high data collection rate and statistical accuracy, a large vanadium
sample cell (56 mm height, 20.5 mm outer diameter, 0.5 mm wall thickness) was chosen.
This cell was made by electron beam welding a vanadium sheet to the top and bottom using
stainless steel. A hole of diameter 2 mm to accommodate the thermal sensor was drilled in
each of the two stainless steel pieces.

The sample was inserted into a cryostat. In order to minimize parasitic scattering from
the sample environment the cryostat was equipped with a vanadium tail (25 mm outer and
24 mm inner diameter) and an aluminium body of diameter 500 mm. The temperature
recorded at the sample was stable within 0.04 K for the duration of the whole experiment.
An aluminium foil of thickness 0.1 cm was wrapped twice around the sample container
in order to increase its thermal conductivity. The resulting temperature gradient along the
sample was estimated to be 0.02 degrees per centimetre and, to a first approximation, did
not depend on the presence of the sample.

The gas handling system consisted of a line for the introduction of the fluid samples Kr
and 3He into the container. The line was also connected to a vacuum pump necessary for
the evacuation of the circuit; a thermal compressor was used in order to achieve the high
densities of the Kr samples. The pressure was measured by a pressure transducer and it
was known within 0.01 bar.

The connection of the container to the fluid injection line was made via a stainless
steel tubing of external diameter 0.16 cm soldered on the top of the container and exiting
the cryostat through the top flange of the sample stick. A heating wire wrapped around
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the injection line allowed us to maintain the part of this tubing inside the cryostat at a
temperature 20 K higher than the sample one throughout, as verified by placing several
thermocouples along it. In this manner, cold spots favouring sample condensation and
consequent variation of the sample density in the container were avoided. The control of
the temperature of the injection line and of the temperature gradient along the tubing down
to the sample container was necessary to monitor the sample’s thermodynamic stability.

Table 1. Densities and temperatures of the nine states investigated. The estimated uncertainty
in the temperature values is 0.04 K (see the text). We also report the reduced temperature and
density.

Experiment
number T (K) ρ (nm−3) (T − Tc)/Tc (ρ − ρc)/ρc)
1 227.64 5.38± 0.01 0.088 −0.17
2 227.50 7.25± 0.01 0.087 0.11
3 217.93 7.25± 0.01 0.041 0.11
4 211.60 7.25± 0.01 0.010 0.11
5 210.32 7.25± 0.01 0.005 0.11
6 211.48 9.35± 0.02 0.010 0.43
7 218.18 9.35± 0.02 0.042 0.43
8 218.10 5.80± 0.01 0.042 −0.11
9 211.58 5.80± 0.01 0.011 −0.11

Figure 1. Krypton isotherms in the pressure–density plane from the data of reference [6].
Points marked with stars represent the states investigated in the present work, while diamonds,
full circles and crosses refer to the data of references [16, 18, 19] respectively.
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Nine thermodynamic supercritical states have been investigated along four different
isotherms. Figure 1 shows the experimental points in theP–V plane together with the
states corresponding to similar previous measurements reported in the literature. The density
values have been obtained from the recorded pressure and temperature measurement using
the experimental thermodynamic results of Streett and Staveley [6]; the temperatures and
densities of the states investigated along with the corresponding experimental uncertainties
are summarized in table 1.

2.1. Data analysis

The procedure for extracting the structure factorS(k) from the neutron scattering data is well
established [7]. A sequence of corrections has to be applied to the measured intensities:
we need to remove the scattering from the sample environment, correct for resolution,
attenuation, multiple scattering and inelasticity effects, subtract the incoherent scattering
contribution and normalize the data. Some of these corrections require the numerical
evaluation of smoothly angle-dependent parameters which are related to:

(1) the instrument itself (wavelength, zero angular offset, instrumental resolution);
(2) the sample and its environment(sample composition, density, container geometry

and dimensions); and
(3) the neutron scattering characteristics (coherent, incoherent and absorption cross

sections).

The present experiment was aiming for high final accuracy (the 1% range); therefore
we will detail the various steps of the data analysis and their relative importance as regards
the final accuracy.

2.1.1. Angular scale definition.The first step in the data analysis was the definition of the
angular scale. In fact, the nominal values of the scattering angle have to be corrected for
the angular offset and because of what in the literature is known as the ‘umbrella’ effect [8].

The angular offset value has been determined by using the results of powder
measurements, and it turned out to be 0.4865± 0.0018. The ‘umbrella’ effect occurs
because each point of the sample scatters in a cone, and the scattering cones are intersected
by the rectangular cells of the detectors. The finite sizes of the sample, detector and sample–
detector distance modify, especially at low angles, the angular scale definition with respect
to the nominal one. This problem can be treated analytically or numerically; it involves
knowledge of the geometrical and instrumental parameters, like the sizes of both the sample
and the detector cell, the sample–detector distance, the beam divergence, and the focusing
of the monochromator. In our case the correction to the nominal angle was performed
numerically using a procedure devised in [9]: it turned out to be positive and decreased on
going from low to high scattering angles. Finally the2 scale so obtained was changed into
a k-scale by using Bragg’s law.

2.1.2. Background and container scattering.The relatively large size of the sample
container used in the experiment led to several effects. First, since the evacuated nose,
placed between the sample and the detector, was adjusted for a sample diameter of 2.0 cm,
the detector cells placed at both of the extremes of the multidetector had only a partial view
of the container anda fortiori of the cryostat tail. This created a typical periodic dip in
the intensity pattern at the step chosen for the multidetector displacement (see figure 2).
Secondly, since a precision in the 1% range on the finalS(k) was required, the corrections
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Figure 2. Curves (a) and (b) represent raw data from experiment No 3 (see table 1) and the
corresponding3He intensity pattern. Curve (c) is the difference between the other two curves;
this difference has been shifted upwards for clarity.

for the scattering from the container and for the sample self-attenuation are of crucial
importance. This is particularly true for Kr which has a high neutron absorption cross
section.

These considerations led us to the choice of the3He technique [10] for these corrections.
The 3He technique offers the possibility of an accurate correction for any structural detail of
the container plus cryostat and background pattern. Here we briefly describe the principle
of the method. The total intensityI S,CT scattered by the container filled with the sample and
immersed in the cryostat tail can be described as the sum of the intensityIS scattered by
the sample plus the intensityI SC scattered by container and cryostat, plus the intensityI SB
coming from the background in the presence of the sample:

I
S,C
T (k) = IS(k)+ I SC(k)+ I SB(k). (1)

The scattering from the container and the environment can be directly measured. In fact, if
the container is filled with an almost pure neutron absorber, like3He, and immersed in the
cryostat tail, the corresponding intensity can be analogously written as

ICT (k) = IHe
C (k)+ IHe

B (k) (2)

where the symbols are defined in a similar way to in equation (1). The term corresponding
to the intensity scattered by3He has been omitted because of the extremely low neutron
scattering cross section of3He compared to its absorption cross section. When the3He
density is chosen in order to match the sample transmission,ICT (k) can be considered a
direct measurement of the last two terms on the right-hand side of equation (1).

After the subtraction ofICT from I
S,C
T (k) we are left with the intensityIS(k) scattered

by the sample; it is still affected by effects due to multiple-scattering events and neutron
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beam attenuation which will be discussed in the next section. In figure 2 the raw data
corresponding to experiment No 3 of table 1, the corresponding3He intensity pattern, and
the intensityIS(k) after the container and background correction are reported. The sharp
peaks visible in the two lower curves are Bragg peaks due to the scattering from aluminium
and vanadium present along the neutron paths in the cryostat and in the sample container.
Due to their large intensity, the background subtraction described above is not able to fully
correct for their presence. Therefore a blank has been left at the corresponding position in
the final data.

Figure 3. 3He raw intensities as functions of the density for selectedk-values. For the sake of
clarity all of the curves except the lowest one have been shifted upwards by a constant amount.
The n = 0 values refer to the empty-cell measurement.

We must note here that in order to save beam time we have chosen to make only three
measurements with3He and one measurement with an empty container. Two of the three
3He runs were at the same density but different temperatures, while the third run was at
the same temperature as one of the other two but for a different density. We derived the
intensitiesICT for the other states by taking advantage of the temperature independence
shown by the measured3He intensity patterns and of the linear behaviour as a function of
the density exhibited for eachk-value, as shown in figure 3 for selectedk-values.

We estimate that the systematic error of the procedure adopted for the background
correction is well within the statistical accuracy of theICT -measurements which is less than
eight parts per thousand.

2.1.3. Multiple scattering and attenuation.The neutrons which contribute to the intensity
IS(k) scattered by the sample can be divided into those coming from a single-scattering
event,I1(k), and those multiply scattered,Im(k):

IS(k) = A1(k)I1(k)+ Im(k) (3)
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whereA1(k) is the attenuation coefficient for the single scattering which will be discussed
later andIm(k) also includes the attenuation of multiply scattered neutrons.

When the sample is contained in a can and this in a cryostat, like in the present case,
there are two kind of process which contribute toIm(k). The first is the sequence (two
or more) of scattering events which are all within the sample: we will call the resulting
intensityI Sm(k). The other process is the sequence (two or more) of scattering events within
the sample, the container and the cryostat tail with at least one (but not all) of them within
the sample; we call the resulting intensityIEm (k), so

Im(k) = I Sm(k)+ IEm (k). (4)

We must note here that multiple-scattering events all within the container and/or the cryostat
tail are no longer contributing, because the corresponding intensity is included inICT (k) and
therefore removed when this is subtracted fromI S,CT (k).

The evaluation of the multiple-scattering contributions can be performed numerically;
in our case the sample and its environment have a cylindrical symmetry, and the multiannuli
treatment of the CYLMUL code [11] is adequate. The multiple scattering could therefore be
computed for each experimental situation, e.g. the Kr sample within the container and the
cryostat or3He within the container and the cryostat. A few comments are necessary here.
CYLMUL allows one to compute multiple scatterings within several annuli of different sizes
and cross sections, each scattering event being considered as fully isotropic. The assumption
of isotropy of the scattering is certainly justified for vanadium, an almost incoherent scatterer
of heavy mass. However, it has been verified with a simple model [12] that after the second
scattering event the memory of the initial structure factor is effectively lost also for Kr, and
the twice-scattered intensity can be therefore considered as isotropic to better than 1%.

Although multiple scattering does not introduce any relevant modification of the
structure, it is nevertheless the largest correction that we apply to the data, since it
corresponds to about 10–15% of the corrected Kr intensity level. We estimate that systematic
errors in this correction correspond to a rather flat level contribution up to∼1.5% in the
final Kr differential scattering cross sections. They could arise partially from uncertainties in
the parameters defining the beam and the sample environment and partially from the limits
of the algorithm itself such as the hypotheses made for the higher-order multiple-scattering
terms.

The coefficientA1(k) in equation (3) takes into account the attenuation of both the
incident and the scattered neutron beams due to the various materials of the sample
environment and container as well as the sample itself. It corresponds to the coefficient
AS,SC in the Paalman and Pings notation [13]. This parameter can be computed numerically
for the once-scattered neutron; the computation requires the knowledge of the geometrical
sizes and the total cross sections of the sample, container and cryostat tail. The effect of the
cryostat tail is to introduce an angular dependence (less than one part per thousand) which
in the present case has been neglected.

Thek-dependence of the attenuation coefficient, normalized to the value taken atk = 0,
can be well represented in a simple polynomial form of the type

A(k) = a + bk2+ ck4 (5)

In table 2 the values of the coefficientsa, b, c for the nine states investigated are reported.

2.1.4. Inelastic effects and structure factors.After the multiple-scattering contribution
has been subtracted and the attenuation taken into account, the resulting intensity can be
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Table 2. Values of the coefficients of the analytical representation of the self-attenuation factor
A1(k) (see equation (5)).

Experiment
number a b (10−5 nm2) c (10−10 nm4)

1 1.000 0.796 2.115
2, 3, 4, 5 1.000 1.405 4.670
6, 7 1.000 2.327 8.247
8, 9 1.000 0.918 2.590

Table 3. Values of the coefficients of the analytical representation of the inelastic correction
P(k) (see equation (7)).

Experiment
number p0 p1 (10−5 nm2) p2 (10−10 nm4)

1, 2 1.008 −2.093 5.312
8, 3, 7 1.008 −2.070 5.026
9, 4, 6 1.008 −2.054 4.824
5 1.008 −2.051 4.777

expressed in term of the static structure factorS(k):

I1(k) = CNσs

4π

{
σc

σs
[S(k)− 1]+ 1+ P(k)

}
(6)

where: C is an instrumental constant defined as the product of the incident neutron flux
times the detector efficiency and the detection solid angle;N is the number of sample atoms
in the neutron beam;σc andσs are the coherent and total scattering cross sections of the
sample, respectively; andP(k) is the correction for inelastic processes.

The inelastic correctionP(k) has been evaluated in two different ways which have
given the same results within a few parts per thousand. First the procedure proposed
in references [14, 15] was used and secondly the perfect-gas expression for the dynamic
structure factorS(k, ω) multiplied by the detector efficiency was integrated overω [16].
The results forP(k) could be well represented by using a polynomial form of the type

P(k) = p0+ p1k
2+ p2k

4. (7)

The values of the coefficientsp0, p1 andp2 for the four temperatures of the experiment are
reported in table 3.

The normalization constantC∗ = CNσs/4π can be obtained by imposing the
requirement that limk→∞ S(k) = 1. Since in the experimentalk-range the intensity patterns
exhibit marked oscillations even in the high-k region, we have fitted to the data the Verlet
model [17]:

I (k) = αexp(−βk)
k

sin(γ k + δ). (8)

We estimate that the uncertainty in determining the normalization factor with this procedure
varies from 1.7% at the lower densities (experiments 1, 8 and 9) to 0.7% for the other states.

The final structure factors have now been obtained from (6) using the valueσc/σs =
0.936 already used in a previous study [1]. As noted in [1], a stringent test of the accuracy of
theS(k) so obtained is given by the condition that the Fourier transform of(S(k)−1)/ρ—
that is,h(r)—equals−1 at short distances because of the essentially impenetrable core. The
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presence of the experimental errors and the need for extending the data to small and largek

prevent the exact fulfilment of this condition and introduce an oscillatory behaviour ofh(r),
especially visible for smallr-values. Nevertheless, we have verified that with the chosen
value forσc/σs the amplitude of these oscillations is small and their shape is symmetrical
about−1. As a result of the counting statistics and the data analysis procedure adopted,
we estimate that the final accuracy of the structure factors obtained is within two parts per
hundred.

3. Theory

We consider a system of particles interacting via two- and three-body potentials:

V (r1, r2, . . . , rN) =
N∑
i<j

v2(|ri − rj |)+
N∑

i<j<k

v3(ri , rj , rk) (9)

and we divide the total potential into two contributions, the first,VR, which includes the
three-body part (assumed here to be mainly repulsive) and the repulsive part of the two-body
potentialvR (v2(r) = vR(r)+ w(r)):

VR(r1, r2, . . . , rN) =
N∑
i<j

vR(|ri − rj |)+
N∑

i<j<k

v3(ri , rj , rk) (10)

and the second including the attractive partw (which we assume sufficiently regular to have
a Fourier transform) of the latter:

W(r1, r2, . . . , rN) =
N∑
i<j

w(|ri − rj |) (11)

V (r1, r2, . . . , rN) = VR(r1, r2, . . . , rN)+W(r1, r2, . . . , rN). (12)

The thermodynamics and the structural properties of the system are evaluated via the
hierarchical reference theory [20] introducing the family of partially interacting systems
(Q-systems) defined by the potential

VQ({r}) = VR({r})+WQ({r}) (13)

where{r} indicates the ensemble of coordinates(r1, r2, . . . , rN) and

WQ({r}) =
N∑

i<j=1

wQ(|ri − rj |). (14)

HerewQ(r) is defined by the equation

w̃Q(k) =
{

0 if k < Q

w̃(k) if k > Q
(15)

the tilde denoting Fourier transformation. The introduction of theseQ-systems which
interpolate between the model characterized only by the repulsive potential and the fully
interacting system can be justified on the basis of the renormalization group theory as
detailed in [20]. In the same paper the equation governing the evolution of the Helmholtz
free energy asQ changes was deduced. It reads

− d

dQ

(−βAQ
V

)
= Q2

4π2
ln

[
1− φ̃(Q)

C̃Q(Q)

]
(16)
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where φ̃(k) = −βw̃(k), β = 1/kBT , andAQ and C̃Q(k), the modifiedHelmholtz free
energy and direct correlation function, are related to the Helmholtz free energyAQ and
direct correlation functions̃cQ(k) of theQ-system by the equations

−βAQ
V

= −βAQ
V
− 1

2
ρ[φ(0)− φQ(0)] + ρ

2

2
[φ̃(0)− φ̃Q(0)] (17)

C̃Q(k) = c̃Q(k)+ φ̃(k)− φ̃Q(k) (18)

whereρ is the density of the system. The previous equations are exact, but in order to
give rise to a practical scheme they require a closure relation expressing the modified direct
correlation function in terms of the free energy. In [21] a closure relation was studied
extensively in the case of a Lennard-Jones system, corresponding to the position

C̃Q(k) = c̃R(k)+ λQφ̃(k)+ G̃Q(k) (19)

wherec̃R(k) is the direct correlation function of the system interacting with the potentialVR,
the reference system, whose properties are assumed to be known. In the previous studies,
G̃Q(k) andλQ were determined by the requirements

C̃Q(k = 0, ρ, T ) = ∂2

∂ρ2

(−βAQ(ρ, T )
V

)
(20)

gQ(r) = 0 if r < d (21)

corresponding respectively to the compressibility sum rule and the core condition on a
diameterd. This approximation is called hard-core HRT (HC-HRT). The same kind of
closure was used in [22] for a model of Kr involving both two-body and three-body
interactions. Here, we adopt a new closure inspired by the SMSA integral equation which
can be written as a local relationship between the direct correlation functionc(r) and the
distribution functionh(r) = g(r)− 1 [5]:

c(r) = φ(r)+ g(r){1− exp[βvR(r)]}
= cR(r)+ φ(r)+ [h(r)− hR(r)]{1− exp[βvR(r)]} (22)

where vR(r) is the (two-body) potential of the reference system and in the second line
use has been made of the analogous equation satisfied by the direct correlation function
of the reference system. SMSA has been shown to accurately reproduce the short-range
correlations in simple fluids. The formal structure of this integral equation suggests that a
realistic description of the short-range corrections to the mean-field approximation is given
by the last term in (22). This information will now be used in the framework of HRT.

The parametrization ofCQ(r) is formally identical to the one already used for hard-core
particles (19). The parameterλQ is again determined by the compressibility sum rule (20)
which explicitly gives

C̃Q(k) = c̃R(k)+ φ̃(k)+ φ̃(k)
φ̃(0)

[
∂2

∂ρ2

(−βAQ
V

)
− c̃R(0)− φ̃(0)

]
+
[
G̃Q(k)− G̃Q(0) φ̃(k)

φ̃(0)

]
. (23)

This formula shows that the modified direct correlation function is given by the mean-field
contribution plus two terms: the first takes care of the compressibility sum rule and is
related to the density derivative of the free energy, while the second describes the short-
range correlations induced by the attractive interactions. Here, however, the functionGQ(r)
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is not determined by the condition (21) which is only appropriate for hard-core molecules.
Rather,GQ(r) is now expanded in terms of a basis of short-range functionsun(r):

GQ(r) =
∑
n>1

γQn un(r) (24)

where the coefficientsγQn are determined by imposing the condition that the last term in
equation (23) reproduces the short-range correlations in the same spirit as the SMSA integral
equation (22). More precisely we first equate the last term of equation (23) to the last term
of equation (22), evaluated for the partially interacting system:

GQ(r)− G̃Q(0)φ(r)
φ̃(0)

= [hQ(r)− hR(r)]{1− exp[βvR(r)]} (25)

where the functionGQ(r) is parametrized via equation (24). Then we project equation (25)
onto the basisul(r), obtaining a set of coupled algebraic equations for the coefficientsγQn :∑
n>1

γQn

∫
d3r exp[−βvR(r)]ul(r)ūn(r)

=
∫

d3r ul(r)[hQ(r)− hR(r)]{exp[−βvR(r)] − 1} (26)

where

ūn(r) = un(r)− ũn(0)
φ̃(0)

φ(r). (27)

In our calculations we have chosen the basis functions as

un(r) = rn−1{1− exp[−βvR(r)]} (28)

which is usually truncated after the first five terms, i.e. those withn = 1, . . . ,5. Notice
that equation (26) reduces, in the case of a hard-sphere reference system, to the usual core
condition (21).

Equation (26) can be conveniently written in differential form, leading to evolution
equations for the coefficientsγQn as a function ofQ. If we take theQ-derivative of equation
(26) we obtain terms involving the derivative ofγQn , which is the quantity of interest, and the
derivative ofhQ(r) = gQ(r)− 1. The evaluation of thisQ-derivative should be performed
with care because for a finite, non-zero, value ofQ, h̃Q(k) is a discontinuous function of
Q, related toC̃Q(k) by the chain of equations

ρ2h̃Q(k) = F̃Q(k)− ρ (29)

F̃Q(k) =
{
F̃Q(k) if k > Q

F̃Q(k)/[1+ F̃Q(k)φ̃(k)] if k < Q
(30)

F̃Q(k) = − 1

C̃Q(k)
. (31)

Using these definitions we obtain∑
n>1

dγQn
dQ

ρ2
∫

d3r ul(r)un(r) exp[−βvR(r)]

= Q2

2π2
P̃l(Q)

[F̃Q(Q)]2φ̃(Q)

1+ F̃Q(Q)φ̃(Q)
−
∫

d3k

(2π)3
P̃l(k)[F̃Q(k)]

2 dC̃Q(k)
dQ

(32)
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where the functionPl(r) is defined as

Pl(r) = ul(r){1− exp[−βvR(r)]}. (33)

TheQ-derivative ofC̃Q(k) can be evaluated from equation (19); this gives

dC̃Q(k)
dQ

= dλQ
dQ

φ̃(k)+
∑
n>1

dγQn
dQ

ũn(k). (34)

The derivative of the parameterλQ gives rise, via the compressibility sum rule (20), to
two contributions:

dλQ
dQ
= d

dQ

∂2

∂ρ2

(−βAQ
V

)
1

φ̃(0)
−
∑
n>1

dγQn
dQ

ũn(0)

φ̃(0)
. (35)

The first term is related to the building up of critical fluctuations asQ changes, being related
to theQ-derivative of a quantity which in the limitQ → 0 is proportional to the inverse
of the compressibility. If the long-range fluctuations have little influence on the short-range
behaviour of the system, the first term in (35) can be neglected, leading to

dC̃Q(k)
dQ

∼
∑
n>1

dγQn
dQ

ūQn (k). (36)

When substituted into equation (32), the evolution equations for the coefficientsγQn become∑
n>1

dγQn
dQ

{
ρ2
∫

d3r ul(r)ūn(r) exp[−βvR(r)] +
∫

d3k

(2π)3
P̃l(k)[F̃Q(k)]

2ūn(k)

}

= Q2

2π2
P̃l(Q)

[F̃Q(Q)]2φ̃(Q)

1+ F̃Q(Q)φ̃(Q)
. (37)

This set of equations must be supplemented by the initial condition

lim
Q→∞

γQn = 0 (38)

expressing the obvious fact that the reference system satisfies the short-range condition
imposed by the SMSA. Note that the approximation which decouples the long-range
behaviour of the system from the core condition is the same as that used before in the
context of the closure given by equation (19). Summarizing, the final numerical problem
consists in the solution of the set of equations (16), (19), (20), (24), (37), and (38) together
with the initial condition

lim
Q→∞

(−βAQ
V

)
=
(−βAR

V

)
− 1

2
ρφ(0)+ ρ

2

2
φ̃(0). (39)

We also have two boundary conditions, the first at low density given by the virial expansion
of the equations, and the second at high density. This latter boundary condition has to be
imposed atρ = ρmax , of the order of the density of the triple point and somewhat arbitrarily
chosen. We have analysed the simple choiceγQn = 0 andλQ = 1 at ρmax . However, we
have checked that the specific form of the boundary condition hardly affects the solution a
few mesh points away from the boundary. Some detail on the numerical solution of this
set of equations can be found in reference [24]. This approximation will be referred to as
soft-core HRT (SC-HRT).

The closure (19), (23) amends some defects of the previously studied approximation to
the HRT. In particular, it copes more naturally with soft-core potentials, which cannot be
well represented by a hard-sphere reference system. However, it shares with the previous
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closure a key approximation—that is, the fact that the regular (mostly attractive) part of the
potential has been taken into account only linearly in the parametrization (19) of the direct
correlation function. It is known [23] that this is satisfactory at densities of the order of
that of the triple point, while it appears to be less accurate at intermediate densities and low
temperatures.

It is clear that in this approximation (19), (24) the direct correlation function of the
Q-system is an analytic function ofk2, so the critical behaviour of the system, in this
approximation, belongs to the same class of Ornstein–Zernike closures as was previously
analysed [4]. For example the divergence of the isothermal compressibility on the critical
isochore is governed by the critical exponentγ = 1.378, while the Ornstein–Zernike
exponentη vanishes. This should be compared with the experimental valuesγ = 1.24,
η = 0.025.

4. The interaction model

The potential used here is the same as that in reference [22], namely the Aziz potential [25]
for the two-body part with the parameters for krypton plus a three-body contribution of the
Axilrod–Teller [26] form (Aziz+ AT)

V (r1, r2, . . . , rN) =
N∑
i<j

vAziz(|ri − rj |)+
N∑

i<j<k

vAT(ri , rj , rk) (40)

vAT(r1, r2, r3) = ν(1+ 3 cos81 cos82 cos83)

r3
12r

3
23r

3
13

(41)

where the8i are the angles of the triangles formed by the vectorsri and rij = |ri − rj |,
i = 1, 2, 3.

The division of the two-body potential into the attractive and repulsive parts is
accomplished by defining

vR(r) =
{
vAziz(r)+ ε if r < σ

0 if r > σ
(42)

w(r) =
{
−ε if r < σ

vAziz(r) if r > σ
(43)

whereε andσ are the depth of the attractive well and the position of the minimum. Note
that the division adopted here is somewhat arbitrary even if it has been used frequently and
with success in the literature [23].

In the HRT equation the reference system enters through the free energy and the structure
factor. These quantities have been calculated using the MHNC equation with the potential
given by equation (10) according to the procedure described in [1]. This implies that the
effects of the Axilrod–Teller interaction on the reference system are calculated according to
a scheme which is known to be fairly accurate in this respect. Each quantity was computed
on a regular grid in the density–temperature plane and later interpolated for the required
thermodynamic state. We checked that the results obtained did not depend upon the choice
of the grid. Our calculations refer to a typical mesh of 500 points.
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Figure 4. The structure factor for the state corresponding to experiment No 7 (points). Full
line: SC-HRT results at the same reduced temperature.

Figure 5. The structure factor for the state corresponding to experiment No 2 (points). Full
line: SC-HRT results at the same absolute temperature. Dashed line: MHNC results.

5. Results

The experimental critical point of krypton is located atρ = ρc = 6.525 atoms nm−3

and T = Tc = 209.29 K while the value for the compressibility factorZ = P/ρkBT at
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Figure 6. As figure 4, but for experiment No 5. The HC-HRT results are also shown (dashed
line).

Figure 7. As figure 4, but for experiment No 8.

the critical point isZc = 0.297 [27]. Within SC-HRT, the critical point of the potential
described above can be located, looking at the divergence of the isothermal compressibility
atρc = 6.74 atoms nm−3 andTc = 219 K, i.e. the present theory gives a critical temperature
higher than the experimental one, while for the critical density the agreement is acceptable.
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Figure 8. The structure factor for the state corresponding to experiment No 1 (points). Full
line: SC-HRT results at the same absolute temperature.

The value of the compressibility factor isZc = 0.31. The same potential in the HC-HRT
closure gaveρc = 6.710,Tc = 220 K andZc = 0.307 [22]. Finally the HC-HRT approach
with only a two-body potential of the Aziz type gives a critical point atTc = 233 K,
ρc = 7.082 atoms nm−3 with Zc = 0.320. This overestimation of the critical temperature
by SC-HRT has at least two kinds of effect on the comparison of the theory with the
experiment. First of all, some experimental points fall inside the theoretical coexistence
curve; this is true particularly for the points which are nearest to the critical singularity.
Secondly thek → 0 limit of S(k), being singular at the critical point, is very sensitive
to small variations in the determination of the critical temperature. Therefore, the 5%
difference inTc between theory and experiment is crucial, especially for the comparison of
the behaviour ofS(k) at smallk. We contrast theory and experiment at the same reduced
temperature,(T − Tc)/Tc, and the same density when possible. We have also made the
comparison at the same absolute temperature in order to determine the effect of the change
in temperature on short range correlations. We deal first with the short-range behaviour,
looking at the region ofk-values of the order of 5–50 nm−1. Some examples of this
comparison are presented in figures 4–8.

We discuss the data starting from the experiment at the highest density: in figure 4
S(k) for experiment No 7 at the density 9.35 nm−3 is compared with SC-HRT at the same
reduced temperature. One can see that there is an overall very good agreement at allk.
There is only a hint of a displacement of the main peak ofS(k) to a smallerk-value. When
the computation is performed at the sameT as for the experiment, the theoretical curve is
almost unchanged. For the density 7.25 nm−3 we display the results for two temperatures.
In figure 5 theT = 227 K data (experiment No 2) are shown and in figure 6 theT = 210
K case (experiment No 5), the temperature closest to the critical isotherm in the present
experiment. There is an overall good agreement, but now the displacement of the position
of the main peak of the theoretical structure factor becomes more appreciable (about 2%)



8866 F Barocchi et al

and the peak height is slightly smaller than the experimental one. These deviations become
rather pronounced for the experimental density 5.80 nm−3: the results of experiment No 8
are shown in figure 7. Finally the data at density 5.38 nm−3 (experiment No 1) are shown
in figure 8. Here the agreement between theory and experiment is again quite good. We
can summarize by saying that for all of the states except the two at density∼5.80 nm−3

(experiments No 8 and No 9) the agreement between theoretical and experimental results
is within seven parts per hundred in the small- and intermediate-k regions up to 25 nm−1,
and is within two parts per hundred for higherk-values up to 50 nm−1. The disagreement
between HRT and the two experiments at density∼5.80 nm−3 is puzzling, because for all of
the neighbouring thermodynamic states at higher and lower density and temperature closer
to and further fromTc, we find better agreement. It seems worth repeating the experiment
for the 5.80 isochore.

We have performed computations also with the previous version of HRT, the HC-HRT
in which hard spheres are used as a reference system. SC-HRT gives systematically better
results than HC-HRT and, as an example, in figure 6 the HC-HRT data are also shown. The
deviation between HC-HRT and experiments is about twice as large as that of SC-HRT for
all of the thermodynamic states of the present experiment.

In the case of experiments 1 and 2, which are located rather symmetrically with respect
to the critical density, at a reduced temperaturet = (T −Tc)/Tc of the order of 10−1 it was
possible to make a detailed comparison between the experiments and the results of different
theories and interaction models. First of all, the comparison between the MHNC and SC-
HRT approximations and experiments at the same absolute temperature is favourable to
MHNC for this range ofk, the difference between MHNC and HRT being of the same
order as the discrepancy between the MHNC results and the experiment. The effect of the
three-body potential on the structure in SC-HRT is small for these temperatures, and in the
direction of systematically improving the agreement with the experiments. The comparison
was for obvious reasons made at the same reduced temperature. The three-body potential
has a large effect, mainly on the equation of state, which gives rise to a sizable change in
the small-k range ofS(k) if the comparison is made at the same absolute temperature.

The comparison in the range ofk of the order of 1.5–5 nm−1 is presented in figures 9
and 10. The usual way to analyse the data is in terms of an Ornstein–Zernike (OZ) plot of
1/S(k) versusk2. The Ornstein–Zernike theory [23] predicts that for sufficiently smallk

the behaviour should be given by the law

1

S(k)
= 1+ ξ2k2

S(0)
.

For sufficiently small values ofk and sufficiently near the critical point, deviations from
the OZ behaviour are expected due to the non-vanishing value of the critical exponent
η. However, the smallness ofη (∼0.03) hides this effect, at least for the range ofk and
for the thermodynamic states that we investigated in these experiments. In all cases the
experimental data follow this law at sufficiently smallk. The largest discrepancy between
the experiments and SC-HRT is within 5%, the difference being smaller in the vast majority
of the cases. The experimental data seem more rectilinear than the SC-HRT results, an
indication that the effects of higher-order terms ink are overestimated by HRT. Firm
conclusions on this point have to wait for measurements at smallerk.

With the same data it is possible to compute several interesting properties, for example
the density derivative of̃c(k) and that of h̃(k). These quantities are valuable because
they are related to three-body correlations, giving other important information about the
structure of the system. We present the density derivative for three thermodynamic states
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Figure 9. OZ plots for experiments No 4 (a), No 5 (b), and No 9 (c) (points) compared with
SC-HRT at the same absolute temperature (full lines). For experiment No 5 the HC-HRT results
are also shown (dashed line). Data (b) and (c) have been shifted upwards for clarity.

Figure 10. OZ plots for experiments No 2 (a), No 3 (b), and No 6 (c) (points) compared
with SC-HRT at the same reduced temperature (full lines). Data (b) and (c) have been shifted
upwards for clarity.

using respectively the data from experiments 1 and 2, 3 and 7, and 4 and 6. The theoretical
results for the derivatives have been obtained by use of the same finite increments as in
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Figure 11. Density derivatives of the direct correlation function from experimental data: from
experiments Nos 1 and 2 (a), 3 and 7 (b), and 4 and 6 (c). Points: experiments. Full line:
SC-HRT. Dashed line: MHNC data.

the experiments. By considering smaller density increments we have verified that what we
present arebona fiderepresentations of the actual derivatives. The experimental data give
results which are rather noisy, so we can only discriminate the main features of the theory.
In all of the three cases the only structure which can be clearly identified in∂c̃(k)/∂ρ (see
figure 11) is a smooth behaviour starting from a value of the order of−0.03 nm6 at smallk
and rising to zero fork ∼ 15 nm−1. The same feature is present in SC-HRT, but the theory
seems to predict a less negative value at smallk. Instead, fork > 20 nm−1 the function
∂c̃(k)/∂ρ predicted by SC-HRT is very small, in agreement with experiments. The same
behaviour is also given by the MHNC approach.

The results for∂h̃(k)/∂ρ are given in figure 12. This quantity has a more pronounced
structure than∂c̃(k)/∂ρ. The experimental data give a well defined maximum atk ∼ 7–
8 nm−1 and a minimum atk ∼ 15–17 nm−1. These features are well represented by SC-HRT
in all three cases. The theory gives also a weak maximum atk ∼ 18–19 nm−1 but this is
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Figure 12. As figure 11, but for the density derivative ofh̃(k).

too shallow to be seen in the present experiment. At higher densities this weak maximum
becomes a well developed structure, and this was seen experimentally [1].

6. Conclusions

We have shown that advances in the experimental techniques and in the theory make feasible
a complete comparative study of static correlations in the critical region over all of the
significant length scales. On the theoretical side, it is known that HRT is a scheme which
embodies the merits of integral equations in the description of correlations at short distance
with those of the renormalization group for the treatment of long-range correlations. By
coping directly with the soft-core part of the interaction we now have a theory (SC-HRT)
which provides realistic functionsg(r) and S(k) for accurate models of two- and three-
body potentials. In this theory, both functions develop the proper scaling behaviour at large
distance when the critical point is approached. It is unique to SC-HRT to have all of these
features. When the thermodynamic state is not too close to the critical point, and hence an
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accurate integral equation like the MHNC one has a solution, comparison of SC-HRT and
MHNC results with experiments indicates that the MHNC approach is slightly superior to
SC-HRT in the description of correlations at short distance. On the other hand, HRT can
approach arbitrarily close to the critical point.

The critical temperature given by SC-HRT is about 5% higher than the experimental
one. This deviation is larger than in the case of the LJ system where HRT overestimatesTc
by 2%. Such a discrepancy can have different origins.

(i) The Aziz potential has a deeper attractive well compared to the LJ one, so the closure
(23) adopted might be less accurate.

(ii) The three-body AT potential gives rise to an effective, repulsive, two-body
contribution which has the samer−6-behaviour at large distance as the pair interaction,
thereby reducing the strength of the attractive tail. Therefore, the inclusion of the full AT
potential in the reference system could be not fully justified and a treatment of the effective
two-body AT interaction on the same grounds as the attractive tail seems more appropriate.

(iii) The model potential which we have used does not represent the true interatomic
interaction of Kr.

We believe that item (ii) is indeed significant and that the present scheme underestimates
somewhat the depression ofTc due to the AT interaction. It should be possible to improve
the theory in this respect. It is important to reduce the deviation inTc at the level of 1–2%
because in this case the use of the same reduced temperature as in the experiments will
leave the short-range part of the correlations essentially unaltered.

From the experimental point of view, the present measurements touch the critical regime
of fluctuations only superficially, because thek-range does not extend to small enough
values to probe the scaling behaviour in depth. High-precision measurements at smallerk

are possible, and the present results suggest that such an experiment should be performed.
This will allow a fruitful comparison between theory and experiment, giving information
on a number of questions like those of the extension of the scaling regime for the structure
factor, the form of the corrections to scaling, and the influence of the long-range parts of
the pair and triplet interactions, which give rise tok3-contributions toS(k), in the critical
region [28]. In the case of a fluid, not much is known on these questions, which concern
the non-universal part of the critical behaviour.
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